Component library – EhLib 4
Users guide

EhLib Team

2007
Redaction: 1.11
(Changes and additions are highlighted by red color)

4Introducing

7Installation

7Unpacking archive

8Installing packages.

9Installing help.

10Using TDBGridEh component

10Common understanding of TDBGridEh, TDataLink and TDataSet.

10TDBGridEh and vertical scrollbar.

11Using DBGridEh for sorting and filtering data in the DataSet.

12Customizing grid title.

13Customizing grid footer.

13Customizing grid data cells.

14Customizing in place editor in grid cell.

15Automatically fits the width of the grid columns to the width of the grid client area.

153D and flat look.

15Using properties of TDBGridEh.IndicatorTitle.

16Using global properties of TDBGridEh.

18Import/Export TDBGridEh data to/from various formats.

19Other feature.

20Features that current version of TDBGridEh is not supported.

20Converting existing TDBGrid component to TDBGridEh.

21Using TPrintDBGridEh component

21Rich text before and after grid

21Features that current version of TPrintDBGridEh is not supported.

21FAQ List:

22Using TDBSumList component

22Common understanding of TDBSumList.

22How it work and why SumList sometimes calculate aggregation values incorrectly.

23Using data-aware edit controls

23Common understanding of edit controls.

23Working with edit butons.

23Using TDBDateTimeEditEh control.

24Using TDBNumberEditEh control.

24Using TDBComboBoxEh control.

24Using TDBLookupComboboxEh control.

25Using SpecRow in columns of DBGridEh component and in DBLookupComboBoxEh component.

26Using TPropStorageEh and TPropStorageManagerEh components

27Introduction in ‘MemTable + DataDriver’ technology.

27TMemTableEh component.

27Two working mode of TMemTableEh component.

28ViewScroll

28Master/detail relations.

28Store records in tree mode (TreeView).

29Working with AutoIncrement fields

29Using the indexes.

30Using a common array of records by several TMemTableEh’s.

30TRefObjectField field type.

30Using maintained aggregates

30Sorting data.

30Creation/removing the table data in memory in the ‘stand-alone’ mode.

31Working with MemTableEh in 'with datadriver' the mode.

31Cached updates.

32Marks of record and transition on record on the mark.

33Searching TMemTableEh

35Quick access to the record values.

36Internal objects of TMemTableEh component.

36Workig with TMemTableEh at design-time.

36TDataDriverEh component.

38TSQLDataDriverEh component.

40TSQLDataDriverEh or TXXXDataDriverEh, which choose to use.

41Working with TSQLDataDriverEh and TXXXDataDriverEh at design-time.

42Feedback and bug reports

 Introducing
The Library contains components and classes for Borland Delphi versions 5, 6, 7, 8 & 2005 and Borland C++ Builder versions 5 & 6 and intended to increase capacity of the client part of the database application in part of interaction with applications user.
TDBGridEh component
[image: image1.png]
Using TDBGridEh
provides all functionality of TDBGrid and adds several new features as follows:
Allows selecting records, columns and rectangle areas.
Special titles that can correspond to several/all columns.
Footer that is able to show sum/count/other field values.
Automatic column resizing to set grid width equal client width.
Ability to change row and title height.
Allows automatic broken of a single line long title and data row to a multiline.
Title can act as button and, optionally show a sort marker.
Automatically sortmarking.
Ability to truncate long text with ellipsis.
Lookup list can show several fields.
Incremental search in lookup fields.
Frozen columns.
DateTime picker support for TDateField and TDateTimeField.
Allows to show bitmaps from TImageList depending on field value.
Allows to hide and track horizontal or vertical scrollbars.
Allows to hide columns.
Allows to show 3D frame for frozen, footer and data rows.
Allows to draw memo fields.
Multiline inplace editor.
Proportional scrolling independently of sequenced of dataset.
Automatically show checkboxes for Boolean fields. Allows to show checkboxes for other type of fields.
Has a procedures to save and restore layout (visible columns, columns order, columns width, sortmarkers, row height) in/from registry or ini file.
Allows to show hint (ToolTips) for text that don't fit in the cell.
Allows to export data to Text, Csv, HTML, RTF, XLS and internal formats.
Allows to import data from Text and internal formats.
Can sort data in various dataset's.
Can filter data in various dataset's.

TDBLookupComboboxEh component
[image: image2.png]
Using edit controls
provides all functionality of TDBLookupCombobox and adds several new features as follows:
Can have flat style.
Allows assign values as to KeyValue property just and to display Text property.
Allows to type (assign) values to Text property not contained in data list (Style = csDropDownEh).
Allows to hold KeyValue and Text as not affecting to each other values.
Take effect when KeyField, ListField, ListSource, DataField and DataSource properties is empty.
Drop down list can:
Show titles,
Have sizing grip,
Automaticaly set width as sum of DisplayWidth of the list fields (Width = -1),
Automaticaly drops on user pressed the key.
Edit button can:
Show DropDown, Ellipsis or Bitmap image.
Have specified width.
Have additional events: OnKeyValueChanged, OnButtonClick.

TDBSumList component
[image: image3.png]
Using TDBSumList
is intended for totaling sums and amounts of records in a TDataSet with dynamic changes. Component keeps a list of TDBSum objects, which contains types of group operations (goSum or goCount) and name sum field (goCount name of field is unnecessary).

TPrintDBGridEh component
[image: image4.png]
Using TPrintDBGridEh
TPrintDBGridEh provides properties and routines for preview and print of TDBGridEh component with several features:
Ability to expand rows vertically until all text is printed.
Ability to scale grid to fit it to page width.
Ability to print/preview title for grid.
Ability to print/preview page header and page footer where you can specify macros for current page, current date, current time and/or static text.
Automatically print/preview multiselected area of TDBGridEh if it area is not empty.
Ability to print/preview rich text before and after grid.

TPreviewBox component
[image: image5.png]

TPreviewBox lets you create a customizable runtime preview.

TPrinterPreview object

TPrinterPreview lets you to record printable data in buffer for following output them on screen and to printer. TPrinterPreview have all functions and properties as in TPrinter object. You can use TPrinterPreview object similarly of TPrinter except some details. In TPrinter Printer.Canvas.Handle and Printer.Handle is the same but in TPrinterPreview PrinterPreview.Canvas.Handle represent the metafile in that is recored the data and PrinterPreview.Handle represent Printer.Handle. That is mean that you have to use PrinterPreview.Canvas.Handle for draw operation (DrawText, DrawTexteEx, e.t.c.) and use PrinterPreview.Handle in functions that return information about printer facilities (GetDeviceCaps, e.t.c.). Global function PrinterPreview returns default PrinterPreview object and shows data in default preview form.

TDBEditEh component
[image: image6.png]
Using edit controls
represents a single or multi-line edit control that can display and edit a field in a dataset or can works as non data-aware edit control

TDBDateTimeEditEh component
[image: image7.png]
Using edit controls
represents a single-line date or time edit control that can display and edit a datetime field in a dataset or can works as non data-aware edit control.

TDBComboBoxEh component
[image: image8.png]
Using edit controls
represents a single or multi-line edit control that combines an edit box with a scrollable list and can display and edit a field in a dataset or can works as non data-aware combo edit control.

TDBNumberEditEh component
[image: image9.png]
Using edit controls
represents a single-line number edit control that can display and edit a numeric field in a dataset or can works as non data-aware edit control.

TPropStorageEh, TIniPropStorageManEh, TRegPropStorageManEh components
Using TPropStorageEh

Components realize technology to store component properties to/from settings storage such as ini files, registry etc.
TMemTableEh component
[image: image10.png]
Dataset, which hold all data in memory.

TDataDriverEh component

Delivers records in TMemTableEh.

Processes records, changed in TMemTableEh (writes them in other dataset, or call events for processing the changes to the program).

TDataSetDriverEh component
[image: image11.png]
DataDriver, that delivers records in TMemTableEh from other DataSet. Processes records, changed in TMemTableEh writing them in other DataSet.

TSQLDataDriverEh component
[image: image12.png]
DataDriver that have properies to keep five SQL expressions and parameters for querying data, removing a record, insertions record, updating record and querying one record. TSQLDataDriverEh can not requests data from server, but can prepare parameters of the request and call global event, where programm can transfer SQL expression on the server.

TBDEDataDriverEh component
[image: image13.png]
DataDriver, which interacts with the DB server using BDE data driver.

TIBXDataDriverEh component
[image: image14.png]
DataDriver, which interacts with the DB server using IBX data driver.

TDBXDataDriverEh component
[image: image15.png]
DataDriver, which interacts with the DB server using DBX data driver.

TADODataDriverEh component
[image: image16.png]
DataDriver, which interacts with the DB server using ADO data driver.

Installation

Below it will be described how to install EhLib under Delphi 6.

Uninstall previous or evaluation version of EhLib from Delphi 6 IDE.
Remove or copy to other directory this files to prevent crossing this and new version of EhLib (Including EhLib.bpl, EhLib.dcp or
EhLibXX.bpl, EhLibXX.dcp files).

Unpacking archive

Unpack EhLib archive.
After unpacking you have to get next directories:

Directories of 'EhLib - source include' version:
	BCB4
	Contain source files which are specific for C++ Builder 4.

	BCB5
	Contain source files which are specific for C++ Builder 5.

	BCB6
	Contain source files which are specific for C++ Builder 6.

	Common
	Contain source files which are common for all versions of Delphi and C++ Builder.

	Delphi4
	Contain source files which are specific for Delphi 4.

	Delphi5
	Contain source files which are specific for Delphi 5.

	Delphi6
	Contain source files which are specific for Delphi 6.

	Delphi7
	Contain source files which are specific for Delphi 7.

	DEMOS
	Demonstration projects. It use tables from the DEMOS directory and BDE alias "DBDEMOS".

	LangResources
	Contain resource files for various languages.

	DataService
	Contain files that contain objects that allows to sort data in various types of datasets.

	ORDERS
	Contain text files in which described how to register various versions of EhLib.

	HLP
	Contain help files.

Directories of 'Ehlib - without source' version or 'Ehlib- Evaluation version':
	BCB4
	Contain all binary files which are need for C++ Builder 4.

	BCB5
	Contain all binary files which are need for C++ Builder 5.

	BCB6
	Contain all binary files which are need for C++ Builder 6.

	Common
	Contain interface part of source files of EhLib. (Only for information, not require for installation.)

	Delphi4
	Contain all binary files which are need for Delphi 4.

	Delphi5
	Contain all binary files which are need for Delphi 5.

	Delphi6
	Contain all binary files which are need for Delphi 6.

	Delphi7
	Contain all binary files which are need for Delphi 7.

	DEMOS
	Demonstration projects. It use tables from the DEMOS directory and BDE alias "DBDEMOS".

	LangResources
	Contain resource files for various languages.

	DataService
	Contain files that contain objects that allows to sort data in various types of datasets.

	ORDERS
	Contain text files in which described how to register various versions of EhLib.

	HLP
	Contain help files.

Create, if need, new directory "EhLib" in your Delphi 6 directory. (For instance: C:\Delphi6\EhLib).

If you have EhLib - source include version then copy in this directory files from Common and Delphi6 directory of EhLib archive.
If you have EhLib - without source version or evaluation version EhLib then copy in this directory files from Delphi6 directory of EhLib archive.

By default EhLib contain resource for English language. If you need other language you can replace original resource files (which already present in C:\Delphi6\EhLib) by the files that is placed in corresponding language directory.
If you does not found directory for necessary language then you need to take files for any existing language directory and change it as you need.

Installing packages.

Run Delphi and use "File\Open..." menu item of Delphi IDE to open the EhLib runtime package C:\Delphi6\EhLib\EhLib60.dpk. In "Package..." window click "Compile" button to compile and build bpl file.

By default Delphi place compiled EhLib60.BPL file to the <Delphi path>\Projects\Bpl directory and this directory already present in the search PATH. But if you overwrite default BPL directory then you need put compiled EhLib60.BPL file into directory that is accessible through the search PATH (i.e. DOS "PATH" environment variable; for example, in the Windows\System directory).

After compiling run-time package you must install design-time package DclEhLib60.BPL into the IDE.

Use "File\Open..." menu item to open design-time package DclEhLib60.dpk. In "Package..." window click "Compile" button to compile the package and then click "Install" button to register EhLib components on the component palette.

EhLib components have to appear on 'EhLib' page of components palette.

[image: image17.png]
Instalation note for users who had EhLib 1.X or 2.X:
Note that Delphi IDE does not move components to the new default place on components palette when you install new version of same component(s). So if you already has EhLib installed, then installation new (3.0) version does not move EhLib components to the 'EhLib' page. To force Delphi IDE to move compontes to the default place on components palette do next:
 Open menu: Component->Configure Palette.
 Select '[All]' line in Pages listbox.
 Click 'Default Pages' button.

 Add, (if need) EhLib directory ("C:\Delphi6\EhLib") in Tools->Environment Options->Library-> Library Path.

Troubleshooting.
	Problem:
	Solution:

	In compilation time Delphi give up next error: "Unit AAA compiled with different version of unit BBB"
	1. It can be because Delphi have access to units from old version of EhLib. Try to remove old version of EhLib completely.

2. It can be because your Delphi or C++ Builder Build number is not equal of Delphi or C++ Builder Build number under which EhLib was compiled. See Build number of Delphi and C++ Builder under which EhLib was compiled below:
C++ Builder 4 (Build 14.11) Update Pack 1 + "C++BUILDER 4 UPDATE PACK 2"
C++ Builder 5 (Build 12.34) Update Pack 1
Delphi 4 (Build 5.108) Update Pack 3
Delphi 5 (Build 6.18) Update Pack 1
Delphi 6 (Build 6.163)

	[Fatal Error] EhLib.dpk(51): File not found: 'DBSumLst.dcu'
	It can be because you did not copy files from Common and Delphi6 directories of EhLib archive to the one directory.
If you have EhLib - source include version then copy files from Common and Delphi6 directory of EhLib archive to alone directory.

Installing help.

Copy EhLib.hlp and EhLib.cnt files from HLP directory of EhLib archive to the Delphi 6 HELP subdirectory.
Run Delphi IDE.
Select Help|Customize menu to start the OpenHelp application.
Add the EhLib.cnt file to the Contents page, add the EhLib.hlp file to the Index and Link pages.
Select "File->Save Project" menu.
Close OpenHelp application.
To check that EhLib help files have been installed correctly, drop DBGridEh component on the form and press F1. Delphi IDE have to open help window with information about TDBGridEh component.

If you want to install help files under several Delphi versions simultaneously (or under C++ Builder and Delphi simultaneously) then you have to create a copy of EhLib.hlp and EhLib.cnt for every version of Delphi or C++ Builder with individual files name (For instance for Delphi 6 copy files EhLib.hlp andEhLib.cnt to EhLibD6.hlp and EhLibD6.cnt respectively).
Next - need to edit file EhLibD6.cnt. It file contain several ":Include" clause at first lines. Comment (using semicolon sign) lines that not contain DELPHI6.OHL word)

:BASE EhLib.hlp
:TITLE EhLib library
;:Include bcb4.cfg
;:Include bcb5.ohl
;:Include delphi4.cfg
;:Include DELPHI5.OHL
:Include DELPHI6.OHL.

Copy EhLibD6.hlp and EhLibD6.cnt to Delphi 6 HELP subdirectory and install help files as described above.

Using TDBGridEh component

Common understanding of TDBGridEh, TDataLink and TDataSet.
All below text in equal degrees pertains as to TDBGridEh component as to TDBGrid component.
A TDBGridEh control lets you view and edit records in a dataset in a tabular grid format.
TDBGridEh does not story data in in itself, it only show data from dataset via TDataLink object. Every database control have internal TDataLink object to interaction with dataset. You can connect TDBGridEh to dataset using DataSource property. If you already use TStringGrid component you can see that data shows in TStringGrid and in TDBGridEh very similarly, but mechanism that use to show data in TStringGrid and in TDBGridEh very different. In TStringGrid count of rows is equal of rows in array of strings while in TDBGridEh (and TDBGrid) count of rows always not more then count of visible rows and although vertical scrollbar can display thumb position regarding the count of record in dataset it take info not from grid but directly from dataset. TDataSet don't allows us to work with data as with array of data i.e. we can not quickly get value of the field from certain record, some types of dataset have not even such notion as record number (in such datasets we can only know that we inhere in the begin of dataset or in the end of its or somewhere between, in that case DBGrid shows vertical vertical scrollbar only in three positions). But to have possibility to draw several record simultaneously TDataLink object allows to have buffer of records (record buffer window) with quick readonly access. DBGrid use this possibility of datalink and set size of record buffer window equal of count of visible rows in grid. We can not control what record must be first in this buffer, DataLink itself scroll record buffer window then we navigate through the dataset and it control the scrolling of record buffer window as that the active record as always in record buffer window. It is a reason why the active record change position when users change thumb position of vertical scrollbar using mouse.

TDBGridEh and vertical scrollbar.
If you works with different type of dataset you can notice that for some type of dataset DBGrid show vertical scrollbar validly but for over vertical scrollbar have only three position independently of record count in dataset. To set vertical scrollbar accomodation DBGrid use RecordCount and RecNo property of DataSet component. But some dataset and even same dataset under some condition holds -1 in RecordCount and RecNo. DataSet function IsSequenced indicates whether the underlying database table uses record numbers to indicate the order of records. When IsSequenced returns True, applications can safely use the RecNo property to navigate to records in the dataset and DBGrid use RecNo property to show thumb position in vertical scrollbar. But when IsSequenced returns False DBGrid can not define current record position and show vertical scrollbar in three positions. DBGridEh component have possibility to show proportional scrollbar for no sequenced dataset. To do it need to activate SumList and create list of record bookmars. Set SumList.Active to True and SumList.VirtualRecords to True. SumList will run through dataset and create list of record bookmarks, if you use client/sever technology to access database SumList will force dataset to fetch all records, so it operation can take much time. Keep in mind that VirtualRecords will work only for full relationship bookmarks dataset, it means that DataSet.ComapreBookmark function has to return > 0 if bookmark1 > bookmark1 (i.e. record to which indicates bookmark1 have to be after record to which indicates bookmark1), = 0 if bookmark1 = bookmark1, < 0 if bookmark1 = bookmark1. TBDEDataSet in most cases support full relationship bookmarks.

Using DBGridEh for sorting and filtering data in the DataSet.

DBGridEh can not sort or filter data by itself. But it can pass action for sorting or filtering to the specal object that will do it in DataSet. You can adjust grid fot a two type of sorting (local or server), using property SortLocal and two type of filtering (also, local and server), but real possibility to aplly each type of operation depended of the type of DataSet. For instance, TBDEDataSet does not suppot sorting locally (inside DataSet) so you can not sort data locally when grid is linked to TQuery or TTable. Furthermore, EhLib have only special objects for standart type of DataSet (not for a third party DataSet's).
Below you can see a table of special object and DataSet in witch these objects can sort or filter data.
	Unit
	DataSet
	Local sorting
	Server sorting
	Local filtering
	Server filtering

	EhLibBDE
	TQuery,
TTable
	N
	Y
	Y
	Y

	EhLibADO
	TADOQuery,
TADODataSet
	Y
	Y
	Y
	Y

	EhLibCDS
	TClientDataSet
	Y
	Y
	Y
	Y

	EhLibDBX
	TSQLQuery,
TSQLDataSet
	N
	Y
	N
	Y

	EhLibIBX
	TIBQuery,
TIBDataSet
	N
	Y
	Y
	Y

When grid is adjusted for a local filtering the special object will build exprression and assign it to a property Filter of DataSet. So need also to set Filtered to True manually.
 When grid is adjusted for a server filtering, the special object will build SQL:ORDER BY exprression and replace ORDER BY string in SQL or Command property of DataSet and reopen DataSet.
 When grid is adjusted for a local sorting the special object will do a sorting using specific of the type of DataSet.
 When grid is adjusted for a server sorting the special object will build expression for SQL 'WHERE' clause in SQL string of dataset. It will try to found string that begining from key string '/*Filter*/' (You can change this key string using global variable - SQLFilterMarker) in SQL expression and adds filter expression after this string in same line. So your SQL query have to have a line that begining from '/*Filter*/'. For instance:
' select *
from table1
where
/*Filter*/ 1=1 '
 For automatically filtering/sorting data in dataset need to add one of the units EhLibXXX (EhLibADO, EhLibBDE, EhLibCDS ... dependenly of the dataset that grid is linked to) to 'uses' clause of any unit of your project. This units have code to register TDatasetFeaturesEh based classes (special object) for respective DataSet's. For other third party DataSet's you have to write and register your own special object or you have to wrtie OnApplyFilter or/and OnSortMarkingChanged event for every required grid. More other, you can write OnApplySorting and/or OnApplyFilter for the global variable DBGridEhDataService. These events has TNotifyEvent type where Sender is TCustomDBGridEh.

Adjusting grid for sorting data:
TDBGridEh allows to show special sortmarking bitmaps (small triangles) in the right part of title cell. In order to automatically marking title by sortmarking bitmaps add dghAutoSortMarking to OptionsEh property. Add dghMultiSortMarking too OptionsEh in order to allow sortmarking several columns simultaneously. Set Column.Title.TitleButton to true for titles which will have possibility to change sortmarkers at run time. Or you can set ColumnDefValues.Title.TitleButton to allow to set sortmarking for all columns which Column.Title.TitleButton is not changed. At runtime clicking on title will change sortmarking. Holding Ctrl key allows to mark several columns simultaneously. After user change sormarking grid call OnSortMarkingChanged event or pass action to special object, if it registered. Special object will use Grid.SortLocal property to determine how to sort data: locally or on the server. If you write OnSortMarkingChanged you can use TDBGrid.SortMarkedColumns property to access to sortmarked columns and TColumnEh.Title.SortMarker property to get state of the sortmarker.

Adjusting grid for filtering data:
TDBGridEh allows to show special row (under title) where user enter expressions in cells for filtering records in dataset. (Expression in the cell can look like: "1", ">=1", ">1 AND <=5", "%TestStr%"). Set STFilter.Visible to True to show this special row. AT Run time, when cursor reside in the filter cell they can press ENTER to apply filter. Grid will parse expression in every not empty filter cell and call TDBGridEh.ApplyFilter, call OnApplyFilter event or pass action to special object, if it registered.

For normally parsinging, the expression in cell have to has next format:

[Operator1] Operand1 [)] [AND|OR Operator2 Operand2 [)]]

Where OperatorX is one of [= | <> | != | > | < | >= | <= | ~ | !~ | in (]
OperandX is a numeric, date or string value or for the operator 'IN' it is a list of values divided by comma.

For instance:
'1'
'>=1'
'>1 AND <=5'
'~ TestStr%'
'!~ TestStr_'
'in (1,2,3,4,5,6) and >100'
'in (Str1,Str2,Str3)'

Customizing grid title.

Complex titles.

TDBGridEh allows to create title above several columns. See Figure:

To do it set DBGridEh.UseMultiTitle property to True and fill label of the fields or caption of title of the column using next rule: every part of text in field label or column title must consist of several parts divided by sign "|", where every common part is same for several columns. Other fields or captions must contain same text in corresponding parts.

For instance:

Field1.DisplayLabel := 'Title1|SubTitle1';

Field2.DisplayLabel := 'Title1|SubTitle2';

 or

DBGridEh.Columns[0].Title.Caption := 'Title1|SubTitle1';

DBGridEh.Columns[1].Title.Caption := 'Title1|SubTitle2';
Title acts as button.

To force title cells act as button set Column.Title.TitleButton to True. Write an OnTitleBtnClick event to take specific action when the user clicks on title cell.

Show bitmaps in titles.

To show bitmap in titles instead of caption use TitleImages property of TDBGridEh and ImageIndex property of TColumnTitleEh.

Default values for title properties.

To set default values for title properties use TDBGridEh.ColumnDefValues.Title property.

Customizing grid footer.

Footers and total values.

TDBGridEh allows to show special row (footer) or rows at bottom part. Use FooterRowCount property to specify the number of footer rows in the grid. Use Footer or Footers property of TColumnEh object to specify information which need to show in footer cells. Footers property useful then you have more then one footer rows. Footers is a collection of TColumnFooterEh objects where information from i-th aliment of collection will be show in i-th cell of footer column. In footer cell, it is possible to show: Sum value for specified field, record count, value of a specified field or static text. Use property Footer.ValueType or Footers[i].ValueType to specify which type of value will be show in footer cell. If ValueType = fvtStaticText, then set the property Value to specify text which need to show. If ValueType = fvtFieldValue, then you need to set property FieldName to specify field, value of which need to show. To force grid to calculate total values need to activate SumList (DBGridEh.SumList.Active := True). Set ValueType to fvtSum and grid must to show sum value of the column field in the footer cell, you can also specify Column.Footer.FieldName to calculate total value of the other field. Set ValueType to fvtCount to force grid to show count of records in the footer cell.

Customizing grid data cells.

Show bitmaps in data cells depending on field values.

TDBGridEh allows to show bitmaps from TImageList component depending on field values. To show bitmaps depending on field values need: Fill list of field values to Column.KeyList property (every value in separate line) and set Column.ImageList property to ImageList control that has the bitmap in according index. Set Column.NotInKeyListIndex to index of bitmap that will be shown if field's value does not correspond to any value in KeyList (for instance you can set index of image for Null field value). At run time you are not allowed to edit bitmap in column cell. Use blank key and mouse click to set next value from Column.KeyList to the field; Shift-blank key and Shift-Mouse click to set previous value from Column.KeyList. Set Column.DblClickNextval to True have allows to change value on mouse double click.

Checkboxes for boolean and noboolean field.

Grid automatically shows checkboxes for boolean field. To show checkboxes for non boolean fields fill first line of Column.KeyList property that corresponds to the checked state of the checkbox, second line - non checked state, and set Column.Checkboxes ptoperty to True. Line of KeyList can represent more than one value in a semicolon-delimited list of items.

Data row height.

Use RowHeight and RowLines properties to specify the data row height. Full data row height = height in pixels of RowLines + RowHeight. Set RowSizingAllowed to True to enable ability to change row height using mouse at run time.
To brake a long text in data row to a multiline set Column.WordWrap to True. Text will wrap if row height > one text line.

Draw memo fields.

To draw memo fields as text set DrawMemoText to True.

Customize cells font attributes and color.

TDBGridEh properties Font and Color describes the font and color used to draw the cells in the grid.
TColumnEh properties Font and Color describes the font and color used to draw the cells in the specified column.

Events to customize cells font attributes and color.

There are several events that you can write to customize cell font attributes and color before a data cell will be drawn.
You can write TDBGridEh.OnDrawColumnCellEvent event handler to provide customized drawing for the data in the cells of the grid. You can draw on the cell using the methods of the Canvas property. But if you want only change attributes of font or color I advise to use below event.
You can write TDBGridEh.OnGetCellParams event to take specific action before a data cell is draw. You can change draw font and background color. This event suitable to use then you want to change attributes of the font or color of whole row.
If you want to change attributes of cell in specified column you can use TColumnEh.OnGetCellParams. Write this event event to take specific action before a column data cell is draw or edit. Before a column data cell is draw you can change draw font, background color, alignment, ImageIndex, Text or State of checkbox. Before a column data cell is edit you can change edit font, background color, text or readonly state.

Default values for column properties.

To set default values for column properties use ColumnDefValues property. New created columns will take property values from ColumnDefValues properties and will hold them till first assign.

Customizing in place editor in grid cell.

Several fields in the dropdown lookup list.

To show several fields in lookup list for lookup fields set Column.LookupDisplayFields to the list of fields.Semicolons should separate multiple field names. Name Column.Field.LookupResultField must be present in LookupDisplayFields list. Lookup list with several fields can be applied only for lookup fields.

Column with simple lookup values.

You can show another text in column depending on field values. Use KeyList and PickList property. KeyList have to contain a values which kept in the field but PickList in according index have to contain a values to show. Set Column.NotInKeyListIndex to index of text from PickList that will be shown if field value do not contain in KeyList (for instance you can set index of text for Null field value). Set Column.DblClickNextval to True to change value on mouse double click.

Dropdown calendar.

For TDateField and TDateTimeField fields inplace editor will show dropdown button to show dropdown calendar. Set Column.ButtonStyle to cbsNone to prevent the display of the dropdown button.

Inplace editor Color and Font.

Inplace editor takes Color and Font from cell color. Cell takes Color and Font from Column Color and Font, and OnGetCellParams event. Inplace editor automatically set multiline mode when row height > height of one line and property WordWrap for column is True.

Automatically fits the width of the grid columns to the width of the grid client area.

Set AutoFitColWidths to True for automatic column resizing to set grid width equal client width. MinAutoFitWidth property determining the minimum width of grid for that column widths will be recalculated.

3D and flat look.
Use OptionsEh property to show/hide 3D frame for fixed, frozen, footer and data rows.
Use Flat property to show grid in flat style.

Using properties of TDBGridEh.IndicatorTitle.
Using properties of the TDBGridEh.IndicatorTitle object you can control the behavior of the grid when the top-left cell is clicked.

[image: image18.png]
To force top-left cell to work as button set TitleButton to True. The property DropdownMenu and UseGlobalMenu also will be toke into consideration in this case. If UseGlobalMenu is True when user clicks in cell then grid will form dropped down menu using global property DBGridEhCenter.IndicatorTitleMenus.IndicatorTitleMenus. If DropdownMenu will be assigned then all elements of this menu will are added to the dropped down menu after elements of global menu.
 property DropdownMenu: TPopupMenu;

Identifies the pop-up menu, which elements will be displayed when IndicatorTitle cell is clicked.
 property ShowDropDownSign: Boolean default False;

Determines whether display the black triangle directed in upper left when cell is clicked.
 property TitleButton: Boolean;

Determines whether the upper left cell works as button.
 property UseGlobalMenu: Boolean default True;

Determines whether need to take into account the DBGridEhCenter.IndicatorTitleMenus property when drop down menu is building.
Using global properties of TDBGridEh.
The Library has a set global properties and event, which influence upon all grids that created in project. You once adjust this properties or event, for instance, in the main Form of your project, and all grids of the project will change its behaviors according to this adjustment. To control the global behavior of grids there are global objects of the TDBGridEhCenter and TDBGridEhStyle type. The First type is used to control of behavior of the grids, the second to controls of the image.
General information about TDBGridEhCenter class:
To access the elements of the TDBGridEhCenter object use global function:

function DBGridEhCenter: TDBGridEhCenter;

It returns the global object of the type TDBGridEhCenter, which controls the behaviour of all grids. You may inherit TDBGridEhCenter class, rewrite virtual methods to change and register your object of management using SetDBGridEhCenter function:

function SetDBGridEhCenter(NewGridCenter: TDBGridEhCenter): TDBGridEhCenter;

It set new object of management and returns the old object. The Old object, in most cases, need to delete.

Properties and events of the TDBGridEhCenter class:

Properties:

 property FilterEditCloseUpApplyFilter: Boolean;

Determines whether the SubTitleFilter will be applied right after choosing value from dropped down list or always need to press Enter to apply filter.
 property IndicatorTitleMenus: TDBGridEhStyleIndicatorTitleMenusEh;

Specifies the list an elements, which will be visible in IndicatorTitle dropped down menu when TDBGridEh.IndicatorTitle.UseGlobalMenu = True and TDBGridEh.IndicatorTitle.TitleButton = True.
TDBGridEhStyleIndicatorTitleMenusEh is a set drawn from the following values

itmVisibleColumnsEh
- Display the menu item with list of columns, cliquing on which possible to show or hide column.

itmCut

- Display Cut menu item

itmCopy

- Display Copy menu item

itmPaste

- Display Paste menu item

itmDelete

- Display Delete menu item

itmSelectAll

- Display SelectAll menu item
Events:

 OnApplyFilter: TNotifyEvent;

The Event occurs when the grid apply SubTitleFilter. Sender parameter is a grid that apply filter. In the handler of event you can call the default handler - DBGridEhCenter.DefaultApplyFilter.
 OnApplySorting: TNotifyEvent;

The Event occurs when the grid apply sorting. Sender parameter is a grid that apply sorting. In the event handler you can call the default handler - DBGridEhCenter.DefaultApplySorting.

 OnBuildIndicatorTitleMenu: TDBGridEhBuildIndicatorTitleMenu;

The Event occurs when the grid forms the dropped down menu on mouse click on upper left cell. The Event is caused if TDBGridEh.IndicatorTitle.TitleButton = True. Sender parameter is a grid that pressed IndicatorTitle button. PopupMenu parameter is a menu that will is displayed under cell. You can call default handler that build menu items by default
 DBGridEhCenter.DefaultBuildIndicatorTitleMenu(Grid, PopupMenu);

and then execute the additional manipulates, for instance, add one more elements of menu.
// Below example that demonstrate how add new menu item in list of IndicatorTitle menu.
// Declare global menu item for printing the grid.
var DBGridEhPreviewIndicatorMenuItem: TDBGridEhMenuItem;

// In public section of main Form declare methods for OnBuildIndicatorTitleMenu event.
 procedure BuildIndicatorTitleMenu(Grid: TCustomDBGridEh; var PopupMenu: TPopupMenu);

// И события, которое будет вызываться при выборе нового меню, которое мы добавим в BuildIndicatorTitleMenu.

 procedure MenuEditClick(Sender: TObject);

// In TMainForm.OnCreate event of the program, assign the event on that will be form IndicatorTitle menu items.
procedure TForm1.FormCreate(Sender: TObject);

begin

 DBGridEhCenter.OnBuildIndicatorTitleMenu := BuildIndicatorTitleMenu;

end;

// Method Itself.
procedure TForm1.BuildIndicatorTitleMenu(Grid: TCustomDBGridEh; var PopupMenu: TPopupMenu);

begin

// At first it calls the default method of menu building.
 DBGridEhCenter.DefaultBuildIndicatorTitleMenu(Grid, PopupMenu);

// Then create new item.
 if DBGridEhPreviewIndicatorMenuItem = nil then

 DBGridEhPreviewIndicatorMenuItem := TDBGridEhMenuItem.Create(Screen);

 DBGridEhPreviewIndicatorMenuItem.Caption := 'Preview';

 DBGridEhPreviewIndicatorMenuItem.OnClick := MenuEditClick;

 DBGridEhPreviewIndicatorMenuItem.Enabled := True;

 DBGridEhPreviewIndicatorMenuItem.Grid := Grid;

// And add it at the end of the menu list.

PopupMenu.Items.Insert(PopupMenu.Items.IndexOf(DBGridEhSelectAllIndicatorMenuItem)+1, DBGridEhPreviewIndicatorMenuItem);

end;

// The Handler of new menu item.
procedure TForm1.MenuEditClick(Sender: TObject);

begin

 PrintDBGridEh1.DBGridEh := TDBGridEh(TDBGridEhMenuItem(Sender).Grid);

 PrintDBGridEh1.SetSubstitutes(['%[Today]',DateToStr(Now)]);

 PrintDBGridEh1.Preview;

end;

 OnCellMouseClick: TGridEhCellMouseEvent;

type TGridEhCellMouseEvent = procedure (Grid: TCustomGridEh; Cell: TGridCoord;

 Button: TMouseButton; Shift: TShiftState; X, Y: Integer) of object;

The Event occurs on mouse clicking any cell of the grid. In event pass Grid; coordinates of the cell (Cell); Button, which was pressed on mouse (Button); Shift state of keyboard (Shift) and coordinates of the clicked point inside cell (X, Y). In the handler of event you can call the default handler - DBGridEhCenter.DefaultCellMouseClick.
 OnIndicatorTitleMouseDown: TGridEhCellMouseEvent;

type TGridEhCellMouseEvent = procedure (Grid: TCustomGridEh; Cell: TGridCoord;

 Button: TMouseButton; Shift: TShiftState; X, Y: Integer) of object;

The Event occurs when the mouse click on upper left cell of the grid. In the handler of event you can call the default handler - DBGridEhCenter.DefaultIndicatorTitleMouseDown.
 OnLocateText: TLocateTextEventEh;

type TLocateTextEventEh = function (Sender: TObject;

 const FieldName: string; const Text: String; Options: TLocateTextOptionsEh; Direction: TLocateTextDirectionEh; Matching: TLocateTextMatchingEh; TreeFindRange: TLocateTextTreeFindRangeEh): Boolean of object;

The Event occurs at increment or dialogue searching in the grid.
The General information about TDBGridEhStyle class:
To access elements the global DBGridEhStyle object use function:

function DBGridEhStyle: TDBGridEhStyle;

It returns the current object of the type TDBGridEhStyle, which controls the image of all grids. You can inherit TDBGridEhStyle, overwrite virtual methods controlling image of the grid, and register new object of management, using next function:

function SetDBGridEhStyle(NewGridStyle: TDBGridEhStyle): TDBGridEhStyle;

It set new object of the image and returns old. In most often cases necessary delete old object.
Proeprties of the TDBGridEhStyle class:
 property LuminateSelection: Boolean default True;

Determines whether need to laminate the selected area in grid. If LuminateSelection = False then the selected area will be painted by clHighlight color. If LuminateSelection = True then selected area will be painted by method of the light obscuring aside clHighlight color.

 property IsDrawFocusRect: Boolean default True;

Determines whether draw points square around the current cell or line-record in the grid.
Import/Export TDBGridEh data to/from various formats.
EhLib have set of functions to export data from DBGridEh to Text, Csv, HTML, RTF, XLS and internal formats. It can write data to stream (TStream object) or to file.

Example

Pascal: SaveDBGridEhToExportFile(TDBGridEhExportAsText,DBGridEh1,'c:\temp\file1.txt',False);

C++: SaveDBGridEhToExportFile(__classid(TDBGridEhExportAsText),DBGridEh1,"c:\\temp\\file1.txt",false);
EhLib have set of functions to import data from Text and internal formats to DBGridEh's dataset. It can read data to stream (TStream object) or from file.

Other feature.
In lookup inplace editor you can clear (set to Null) LookupKeyField value at runtime. Simply select whole text and press Delete key.

Frozen zone.
Frozen zone is a set of columns appear at the left of the grid that cannot be scrolled. Unlike the fixed columns the frozen columns can receive the edit focus. To specify the count of right nonscrolling columns set FrozenCols property.

Increment search

TDBGridEh allows users to accomplish special "increment" search in grid column. When user enter in increment search mode he can type chars and grid will try to locate text in the current column. Use dghIncSearch and dghPreferIncSearch values (OptionsEh property) to manipulate increment search in the grid. dghIncSearch value allows to do increment search in grid. At run time you can use next key for increment searching:
 Ctrl+F - to begin increment searching.
 Ctrl+Enter - to search next matching.
 Ctrl+Shift+Enter - to search prior matching.
If dghIncSearch in OptionsEh and column is read only then grid will set increment search mode automatically on first key press and will return to normal mode after 1.5 sec. dghPreferIncSearch value determine that the grid will set increment search mode automatically on first key press instead of cell editing.

Horizontal or vertical scrollbars.

Use VertSctollbar, HorzSctollbar properties to hide/show and track horizontal or vertical scrollbars.

Multiselect

TDBGridEh allows to select records, columns and rectangle areas for following operations on selected area.
On allowing of multiselect affects next properties:
 dgMultiSelect in Options property - Specifies whether the multiselect is allowed.
 dghClearSelection in OptionsEh property - Specifies whether the selection will be cleared after user move to next cell.
 EditActions property - Specifies actions which user can execute on selection (Copy,Cut,Delete,Paste,SelectAll).
 AllowedSelections - Specifies the types of selection that allowed to do (Rows, Columns, Rectangle area, All).
Selection property specify a current multiselection state, selected records, columns or rectangle area and have properties and functions to access them.

Save and restore grid and columns layout to/from registry or ini file.

TDBGridEh have set of routines to save and restore grid and columns layout to/from registry or ini file:
 RestoreColumnsLayout - Restore Columns Order , Width , SortMarker from registry.
 RestoreColumnsLayoutIni - Restore Columns Order , Width , SortMarker from the ini file.
 RestoreGridLayout - Restore Columns Order, Width, Visibility, SortMarker, Sortmarked index and/or row height from registry.
 RestoreGridLayoutIni - Restore Columns Order, Width, Visibility, SortMarker, Sortmarked index and/or row height from the ini file.
 SaveColumnsLayout - Save Columns Order, Width, SortMarker in registry.
 SaveColumnsLayoutIni - Save Columns Order, Width, SortMarker in the ini file.
 SaveGridLayout - Save Columns Order, Width, Visibility, SortMarker, Sortmarked index and row height in registry.
 SaveGridLayoutIni - Save Columns Order, Width, Visibility, SortMarker, Sortmarked index and row height in the ini file.

Features that current version of TDBGridEh is not supported.

This version of TDBGridEh does not support next features:
 TDBGridEh can not have individual row height of every data row.
 TDBGridEh can not works as TreeView. It can not have nodes and leafs.
 TDBGridEh can not merge data cells horizontally or vertically.

Converting existing TDBGrid component to TDBGridEh.

Although TDBGridEh does not inherited from TCustomDBGrid component, there are many alike properties in TDBGridEh and TDBGrid.
It allows convert existing TDBGrid component to TDBGridEh with minimum losses.
To convert existing TDBGrid component to TDBGridEh follow next instructions:

Open form with TDBGrid component in Delphi IDE.
Set view form as Text (Alt-F12)
Rename all TDBGrid objects to TDBGridEh ('object DBGrid1: TDBGrid' -> 'object DBGrid1: TDBGridEh')
Set view form back as Form (Alt-F12)
Rename all TDBGrid objects in form declaration to TDBGridEh ('DBGrid1: TDBGrid;' -> 'DBGrid1: TDBGridEh;')
Try to recompile project.

Using TPrintDBGridEh component

Select TPrintDBGridEh in Delphi IDE component palette and drop it on form. Select TDBGridEh component in DBGridEh property. Use Print and Preview routines to print grid on printer or to preview grid in preview form.

Rich text before and after grid

TPrintDBGridEh allows to print/preview rich text before and after grid. Use AfterGridText and BeforeGridText to specify text. Using SetSubstitutes method you can substitute text in BeforeGridText and AfterGridText properties upon print/preview process.

Features that current version of TPrintDBGridEh is not supported.

This version of TPrintDBGridEh does not support next features:
 TPrintDBGridEh can not print/preview several grids on one page.

FAQ List:

Q: How to print/preview grid on page in landscape orientation.
A: TPrintDBGridEh have not special properties to set page oreintation. Before call Print or Preview routines you have to set orientation of virtual printer on which you will send printing stuff.

uses, PrViewEh, Printers.

..............

procedure TForm1.bPreviewClick(Sender: TObject);

begin
 PrinterPreview.Orientation := poLandscape;

 PrintDBGridEh1.Preview;

end;

Using TDBSumList component

Common understanding of TDBSumList.

You can use TDBSumList for totaling records in a TDataSet with visible dynamic changes. Set the DataSet field in the dataset for which you want a watch, and write an SumListChanged event to take specific action after TDBSumList has changed. TDBSumList have SumCollection property that represents a container of TDBSum objects. Every TDBSum object represents a element that can hold specific aggregation value. FieldName and GroupOperation determine type of aggregation value, SumValue hold current aggregation value.

TDBSumList is imbedded in DBGridEh component, so all below text in equal degrees pertains as to TDBSumList component as to TDBGridEh.SumList property.

How it work and why SumList sometimes calculate aggregation values incorrectly.

As you know data-aware controls interact with dataset via TDataLink object. TDataLink does not allow to recalculate aggregation value quickly. For instance when the record is deleted from dataset, dataset sends to all TDataLink objects deDataSetChange event, same event is sent when the local filter have been changed. So when TDataLink receive such event it have to recalculate aggregation value running through whole dataset, even when only one record have been deleted from dataset. After activations, TDBSumList overloads following events of the dataset: OnAfterEdit, OnAfterInsert, OnAfterOpen, OnAfterPost, OnAfterScroll, OnBeforeDelete, OnAfterClose. This way allows to avoid of running through whole dataset when it is not need but other problems is appear such as:

 Assigning these events at runtime. Deactivate SumList Before assignment to one of the aforesaid events.

 Under some conditions SumList can raise exception of access violation. SumList try to return events to dataset but dataset have been deleted. Such situation can appear when SumList (or grid) and dataset placed in different forms (datamodules). In such situation try to deactivate SumList before form or datamodule with dataset will be deleted.

 SumList can not trace changes in dataset if you use SetRange or ApplyRange methods. Call SumList.RecalAll after using such methods.

 SumList can not trace changes in master dataset for detail dataset for not BDE datasets. Call SumList.RecalAll after changing active record in master dataset.

In any other cases if you see that under some conditions SumList calculate values incorrectly then call RecalAll method.

Using data-aware edit controls

Common understanding of edit controls.

EhLib represents five data-aware edit controls for end users: TDBEditEh, TDBDateTimeEditEh, TDBComboBoxEh, TDBNumberEditEh and TDBLookupComboboxEh. EhLib have not nodata-aware version of these controls because every control can work as in data-aware mode as in not data-aware. The base class from which all EhLib edit controls are derived is TCustomDBEditEh. TCustomDBEditEh encapsulates the behavior that is common for edit controls for editing text and if required to edit a database field by introducing methods and properties that provide:

 Basic text editing functions such as selecting text, modifying selected text, and case conversions.

 Ability to respond to changes in the contents of the text.

 Access control of the text for making it read-only or introducing a password character to hide the actual value.

 Validity checking using an edit mask.

 Writing edited text to database field.

 Showing one or several edit buttons (with variable glyphs: dropdown arrow, Ellipsis arrow, up-down arrows, plus sign, minus sign or custom bitmap) at right part of edit box.

 Showing image at the left part of the edit box from image list.

Application can use Text (String type) and Value (Variant type) properties to get and set string or variant values to controls. Text property is a text that you can see controls. Value property hold value of variant type and can hold values of types depending of control type. It can hold Null value or:

 String type for TDBEditEh and TDBComboBoxEh,

 TDateTime, TDate, TTime, Double type for TDBDateTimeEditEh,

 All numeric types for TDBNumberEditEh,

 TDBLookupComboboxEh control hold value that depend of associated type of the field.

If control is connected to the field then assing data to the Text or Value properties automatically write data to the field.

Every control have Flat and AlwaysShowBorder properties to control the border apearance.

Working with edit butons.

Every edit control allows to have one or more edit buttons at right part. You can use EditButton and EditButtons to control them.

Using TDBDateTimeEditEh control.

TDBDateTimeEditEh represents a single-line date or/and time edit control that can display and edit a date or/and time values.

Property Kind determines whether the component is a date editor or/and a time editor (dtkDateEh, dtkTimeEh, dtkDateTimeEh) or custom date-time mask editor (dtkCustomEh).

Use EditFormat property to set custom date/time format. You can use next format elements: 'YY', 'YYYY', 'MM', 'DD', 'HH', 'NN', 'SS'.

By default TDBDateTimeEditEh build edit mask using ShortDateFormat variable. Edit mask can be by six types: three for four-char year - 'MM/DD/YYYY', 'DD/MM/YYYY', 'YYYY/MM/DD' and three for two-char year 'MM/DD/YY', 'DD/MM/YY', 'YY/MM/DD'.

Application can use Text (String type) and Value (Variant type) properties to get and set datetime type value in TDBDateTimeEditEh. If TDBDateTimeEditEh is in dtkDateEh kind then it will change only date part of the field. If TDBDateTimeEditEh is in dtkTimeEh kind then it will change only time part of the field.

Using TDBNumberEditEh control.

TDBNumberEditEh represents a single-line number edit control that can display and edit a numeric values.

TDBNumberEditEh build display text from DisplayFormat property and show display text when control have not input focus.

Use properties of EditButton object to adjust the edit button in right part of edit control. When EditButton in UpDown style the control will work as spin edit. Use Increment property to specifies the value that is added or subtracted from Value when the user spins the control.

Using TDBComboBoxEh control.

TDBComboBoxEh component is an edit box with a scrollable drop-down list attached to it. Users can select an item from the list or type directly into the edit box.

TDBComboBoxEh permits a single line and multiple line of text. Use WordWrap property to set TDBComboBoxEh as multiple line editor.

Use Items property to access to the list of items (strings) in the list portion of the combo box.

Use KeyItems property to access to the list of items (strings) that the will store in field when Items property is sets too. When Items and KeyItems is filled then KeyList have to contain a values which kept in the field but Items in according index have to contain a values to show.

Use Images property to specifies the images that are drawn in the drop-down list and image drawn in left part of combobox. Index of drawing image is takes from ItemIndex property.

Using TDBLookupComboboxEh control.

TDBLookupComboBoxEh represents a combo box that identifies a set of field(s) values in one dataset with a corresponding set of values from another dataset. To understand 'lookup' concepts see Delphi help, Topic - Displaying and editing data in lookup list and combo boxes.

TDBLookupComboboxEh can have two style (Style property):

csDropDownEh - Application can assign and users can type text which does not contained in data list.

csDropDownListEh - Application can assign and users can type text only which present in data list.

If KeyField, ListField, ListSource, DataField and DataSource properties is empty then you can assign KeyValue and Text values that not affecting to each other.

Drop down window takes values from dataset that deterimes by ListSource propery.

Drop down list can:

 Show titles (Captions is taked from Field.FisplayLabel property),

 Show special nonscrolled row in top part of list (SpecRow propery).

 Have sizing grip (Sizable propery),

 Automaticaly set width as sum of DisplayWidth of the list fields (Width propery = -1),

 Automaticaly drops on user pressed the key (AutoDrop propery).

 Have specified width (Width propery).

Using SpecRow in columns of DBGridEh component and in DBLookupComboBoxEh component.

The SpecRow property of TDropDownBoxEh or DropDownSpecRow property of TColumnEh holds a TDropDownBoxEh object. TDropDownBoxEh defines attributes of the special row in the dropdown box.

TSpecRowEh contain next properies:

	CellsText: String
	Specifies the text(s). When dropdown box have more then one columns, use semicolon to separate text for each column.

	Color: TColor
	Background color of special row in dropdown box.

	Font: TFont
	Font of special row text.

	Value: Variant
	Value. Special row be selected when this value is equal to value of control in which it sprecial row belong.

	Visible: Boolean
	Specifies whether the spec row is active and visible in dropDown box

	ShortCut: TShortCut
	Specifies the shortcut for assinging value of specrow to control value.

	ShowIfNotInKeyList: Boolean
	Specifies whether the spec row text will be shows if value of the control not in list of key values.

TSpecRowEh represent the special row in the top part of dropdown box for lookup fields in column of DBGridEh and in TDropDownBoxEh class of TDBLookupComboboxEh component. This row will be active when lookup field or lookupcombobox have value equals specrow value or when value not in list of key value.
Using TPropStorageEh and TPropStorageManagerEh components

TPropStorageEh and TPropStorageManagerEh componetns realize technology to store components properties to/from settings storage such as ini files, registry etc.

Current version supports components to store/restore in/from ini files and registry.

Base component of the given technology is the TPropStorageEh. Place this component on the form, component properties of which you want to save in the storage. Double click on the component at design-time to open properties storage editor window. In the tree of properties you can select required properties for storing. Properties list is a list of all published properties or declared in DefineProperty function of components with the exclusion of properties of TCollection class. Further to the list of all elements of the collection, the tree of properties will contain <ForAllItems> subproperty, when you select subproperty in the given branch, the component will save corresponding subproperty for each element of the collection.

Component TPropStorageEh can save/restore property values in the stream, however for redirect flow in the storage necessary to execute one of the following actions.

1. Place component that inherited from TPropStorageManagerEh on the form.

In this version there are present two such components, this is TIniPropStorageManEh and TRegPropStorageManEh.

Set properties of these component and assign TPropStorageEh.StorageManager property to this component.

2. Or you can once write a code to register the global component - DefaultPropStorageManager. All TPropStorageEh components in which StorageManager property is not assigned will use DefaultPropStorageManager manager for redirecting flow of the property values to the storage.

Code to register the global component can look like this:

----------- MainUnit.Pas--------

......

var

 IniPropStorageMan: TIniPropStorageManEh;

initialization

 IniPropStorageMan := TIniPropStorageManEh.Create(nil);

 IniPropStorageMan.IniFileName := 'MyIniFile.Ini';

 SetDefaultPropStorageManager(IniPropStorageMan);

end.

Introduction in ‘MemTable + DataDriver’ technology.

This technology is intended for unified way of load tabular information from the server on the client with after-treatment these data on the client: editing, sorting, filtrations and unloading changed data back to the server. Technology does not include drivers to access server.

Technology is represented by two main component:

TMemTableEh - dataset, which hold data in memory. Its possible consider as an array of records.

Besides, it:

Supports a special interface, which allows DBGridEh component to view all data without moving active record.

Allows fetch data from TDataDriverEh object (DataDriver property).

Allows unload change back in DataDriver, operative or postponed (in dependencies of the CachedUpdates property).

Allows to create a master/detail relations on the client (filtering record) or on the external source (updating parameters [Params] and requiring data from DataDriver).

Allows once-only (without the dynamic support) sort data, including Calculated and Lookup field.

Allows create and fill data in design-time and save data in dfm file of the Form.

Allows keep record in the manner of trees. Each record can have record elements-branches and itself be an element to other parental record. Component TDBGridEh supports to show the tree-type structure of these records.

Allows to connect to the internal array of other TMemTableEh (via ExternalMemData property) and work with its data: sort, filter, edit.

Has interface for requesting list of all unique values in one column of records array, ignoring local filter of the DataSet. TDBGridEh uses this property for automatic filling a list in DropDownBox of the subtitle filter cell.

TDataDriverEh - carry out two tasks:

1. Delivers data to TMemTableEh.

2. Processes changed records of TMemTableEh (writes them in other dataset, or call events for processing the changes in program).

Furthermore, there are several components that inherited from TDataDriverEh. It is a TSQLDataDriverEh, that have properties to keep five SQL expressions and parameters to: query data, delete record, insert record, update record and requery one record. TSQLDataDriverEh can not interact with server by itself, but can prepare parameters for request and call global event to transfer SQL expression on processing in application. There are several components that inherited from TSQLDataDriverEh, which can send SQL expressions on the server through the corresponding access engine. It is a TBDEDataDriverEh, TIBXDataDriverEh, TDBXDataDriverEh and TADODataDriverEh components.

TMemTableEh component.

Two working mode of TMemTableEh component.

There are two working mode of TMemTableEh: ‘stand-alone’ and ‘with datadriver’.

‘stand-alone’ mode.

In ‘stand-alone’ mode the TMemTableEh works as empty-handed unbound an array of data. Before work with given 'stand-alone TMemTableEh it is necessary to create an internal array of data. For that it is necessary to create external fields (TFields) or field definitions in TMemTableEh and call CreateDataSet method.

'with datadriver' mode.

Mode 'with datadriver' works, when TMemTableEh.DataDriver property is assigned. Internal array is created automatically on activation of MemTableEh. Structure of the fields is delivered by DataDriver component.

ViewScroll

TMemTableEh supports special interface, allowing DBGridEh component to view all data, without moving active record. We will name such state as ViewScroll.

Master/detail relations.

Master/detail relation is a working mode of two datasets when all visible records of one dataset (DetailDataSet) always correspond to one record other dataset (MasterDataSet). In time of moving in MasterDataSet the DetailDataSet will recreate or filters records so that they corresponds to MasterDataSet record. The correspondences is adjusted using of MasterFields and KeyFields properties. DetailDataSet always show only the records, which values of the field/fields defined by MasterFields property is equal to values of the fields defined by MasterFields property of the current record of MasterDataSet.

TMemTableEh allows to create a master/detail relations on the client side "mdsOnSelfEh" (by filtering record) or on DataProvider "mdsOnProviderEh" (by recreating list of records in DataSet).

To adjust TMemTableEh in the master/detail mode use next properies: MasterSource, MasterFields, KeyFields, MasterDetailSide. When MasterDetailSide is mdsOnSelfEh, TMemTableEh will filter records by DetailFields fields using values of MasterDataSet[MasterFields] fields. When MasterDetailSide is mdsOnProviderEh, DetailDataSet will reopen itself, assigning parameters from MasterDataSet[MasterFields]. When opening it will pass parameters to DataDriver. In the mdsOnProviderEh mode the DetailFields are not used.

The third state of working - "mdsOnSelfAfterProviderEh" is a combination two preceding. Upon first moving on record in MasterDataSet the DetailDataSet get records from DataDriver, sending to him parameters with values, assigned from MasterSource[MasterFields] and adds received records in its internal array of record. Upon next moving on same record in MasterDataSet the DetailDataSet will always only filter records locally.

Store records in tree mode (TreeView).

In tree mode the TMemTableEh create node objects (TMemRecViewEh type) for each record in internal array. Node object have reference to record (Rec property) and list of child nodes (NodeItems).

Adjusting TreeView mode is realized by subproperties of TMemTableEh.TreeList object. TMemTableEh automatically adds new record in the tree, using field values defined by TreeList.KeyFieldName and TreeList.RefParentFieldName properties. When new record is appearances in MemTable, it tries to find Parent record the list of existing records, it find record with values of the field in KeyFieldName is equal to value of the field in RefParentFieldName of a new record. Furthermore, it checks, is there array of records have records that will be child’s of the new record. Building of tree can be speeding up, if you create indexes on fields specified in TreeList.KeyFieldName and TreeList.RefParentFieldName. However maximum speed of building tree is possible if records will appear in valid sequence. In other words data must adding as same sequences as it appear in the tree. In this case it is not recommended to create indexes, it can only slow a building a tree. Under such sequences of the arrival of record is recommended also to set FullBuildCheck to False.

Subproperties of TMemTableEh.TreeList property:

Active: Boolean - Defines that TreeView mode is active. In TreeView mode you can access TMemTableEh properties: TreeNodeLevel, TreeNodeExpanded, TreeNodeHasChildren, TreeNodeChildCount.

KeyFieldName: String - Holds a name of the key field of record. Child record will refer to parental record with the key determined by the KeyFieldName field.

RefParentFieldName: String - Holds a name of the field that contain reference to a parent record.

DefaultNodeExpanded: Boolean - Defines a value of Expanded property for new elements of the tree.

DefaultNodeHasChildren: Boolean - Defines a value of HasChildren property for a new elements of the tree.

FullBuildCheck: Boolean – Defines if need check is there existing Child records is exists in array of records when other record have been changed or new record have been added. Setting this property to False can speed up building of tree, but all child records must be added after parent record.

Use next TMemTableEh properties to access state of the tree node for the current record of DataSet:

RecView: TMemRecViewEh - a reference to the tree node of the tree, it is available only in tree mode.

TreeNodeLevel: Integer - Indicates the level of the node in the tree.

TreeNodeExpanded: Boolean - Specifies whether the tree node is expanded.

TreeNodeHasChildren: Boolean - Indicates whether a node has any children.

TreeNodeChildCount: Integer - An amount Child elements.

Working with AutoIncrement fields

TMemTableEh has an AutoIncrement object with InitValue property and Step property to work with fields which values is generated by automatic sequence numbers. such sexes a characteristic TFIeld. AutoGenerateValue = arAutoInc. Values for such fields are generated automatically using internal counter when new record is appeared in internal array. Initial value of the counter is assigned by the InitValue property. After inserting new record a value of the counter increases on the number given by the Step property.

If TMemTableEh is connected to DataDriver, usually value of such fields is generated by the server. To TMemTableEh could get values of fields generated by the server, we recommend to use TMemTableEh and TSQLDataDriver (or inherited from it) as follow:

Set InitValue property and Step property to -1. Values of AutoIncrement fields will have negative values before sending the new record on the server.

Prescribe additional parameters in TSQLDataDriver.SpecParams property in order that SQLDataDriver could get values of AutoIncrement fields generated by the server. On applying updates, after the record will be wrote to the server, SQLDataDriver will request new value of the counter from server and assign to AutoIncrement field on the client.

Using the indexes.

Indexes are used for speedup searching. In particular it is used on building a tree-type structure of records. Pattern of indexes is assigned in IndexDefs collection. TMemTableEh creates indexes on the base of the pattern when making an internal array of records.

Using a common array of records by several TMemTableEh’s.

TMemTableEh allows to use a common tabular array of records by several TMemTableEh components. Herewith one of the TMemTableEh is an owner of the array, but other are connected to this array using ExternalMemData property. Other TMemTableEh accesses external data of the main TMemTableEh disregarding local filter. DataDriver property can be assigned for MemTable that is owner of the array only. Sorting and filtration in each MemTableEh does not affect each other.

Moving records in TMemTableEh when dghRecordMoving is active.

Include dghRecordMoving in OptionsEh of DBGridEh component to allows to move records inside TMemTableEh component. Besides, when TreeList mode is active, DBGridEh allows move records inside tree by changing records and level of node. To move record at run-time, user downs the mouse above indicator of record and drag (when multiselect is active user have to select records to move).

TRefObjectField field type.

MemTableEh unit have code to register new type of field - TRefObjectField. TRefObjectField is intended to keep the pointer to TObject type object and have Value property of TObject type. At design-time choose ‘RefObjectField’ type in form of creating new field to create TRefObjectField field. At run-time in the program you can create a field of this type by assign ftUnknown value to DataType property of FieldDef object.

Using maintained aggregates

MemTableEh provide support for summarizing data over all records of DataSet.

MemTableEh keep aggregated values (such as SUM, COUNT) in TAggregateField field type. At Design-time mode use Fields Editor to create persistent aggregated field. You can bind such fields to TDBEditEh component or to the footer of TDBGridEh.

Sorting data.

Use SortOrder property to sort data in TMemTableEh. Several fields separate by comma. Add ‘DESC’ after fieldname to sort data in inverse sequence. Sorting occurs at the TRecordsViewEh object, so physically the records is not move in internal array TRecordsListEh.

Creation/removing the table data in memory in the ‘stand-alone’ mode.

MemTableEh allows to create an internal array of records at design-time and at run-time. Before you can create the table, you must be set properties to specify the structure of the table you are creating. In particular, you must specify:

Structure of the fields of the new array. There are two ways to do this:

You can add field definitions to the FieldDefs property. At design time, double-click the FieldDefs property in the Object Inspector to bring up the collection editor. Use the collection editor to add, remove, or change the properties of the field definitions. At runtime, clear any existing field definitions and then use the AddFieldDef method to add each new field definition. For each new field definition, set the properties of the TFieldDef object to specify the desired attributes of the field.

Besides you can use persistent field components instead. At design time, double-click on the dataset to bring up the Fields editor. In the Fields editor, right-click and choose the New Field command. Describe the basic properties of your field. Once the field is created, you can alter its properties in the Object Inspector by selecting the field in the Fields editor.

To create an internal array at Design-time mode, click right mouse above dataset and choose 'Create DataSet'. This command does not come up for the context menu while You do not define the whole necessary information.

To create an internal array a mode Run-time, call CreateDataSet method.

If DataDriver property is assigned then internal array will be created automatically on activations MemTable.

In ‘stand-alone’ mode when DataSet is closing it does not delete an internal array of records. To close DataSet with simultaneous deleting of all records and structure, use DestroyTable method.

Use EmptyTable method to delete all records from DataSet.

Working with MemTableEh in 'with datadriver' the mode.

If TMemTableEh.DataDriver property is assigned then MemTable works in 'with datadriver' mode. In this case internal array will be created automatically when MemTableEh become active. Structure of array is afforded by the DataDriver component.

If FetchAllOnOpen property is True then MemTableEh loads all records from DataDriver on open. If FetchAllOnOpen is False then MemTableEh will not load records till application will call Next or FetchRecords methods. Next checks that cursor position at end of DataSet, fetch record and move to the next record. FetchRecords fetch more reords from DataDriver and add at the end of internatl array. Method takes one parameter - an amount of record, which you want fetch. To fetch all record, pass -1 as parameter. When MemTable connected to DBGridEh the Grid calls FetchRecords by itself via IMemTableEh interface to display all visible record on the view area. In 'with datadriver' mode all changes are transferred in ApplyUpdates method of TDataDriver component. If CachedUpdates properties is False then changes are transferred right after Post method, if CachedUpdates is True then data are not transferred until the client application calls the ApplyUpdates method.

Cached updates.

TMemTableEh can work in operative or postpone updates. Mode defines, when information about changes will be sent in TDataDriverEh component (herewith TSQLDataDriverEh and TXXXDataDriverEh will immediately send change on the server). In the mode of the operative updates TMemTableEh sends information right after DataSet call Post method or append new record. In the mode of postpone updates the TMemTableEh does not send information about changes, but accumulates them in the special buffer. Data are not transferred until the client application calls the ApplyUpdates method. To turn on the postpone updates set CachedUpdates property to True. The main benefits of enabling postpone updates are fewer transactions and shorter transaction times and minimization of network traffic.

Data are not transferred to TMemTableEh until the client application calls the ApplyUpdates method. ApplyUpdates have a single parameter – MaxErrors. MaxErrors indicates the maximum number of errors that the DataDriver should allow before prematurely stopping the update operation. Set MaxErrors to –1 to indicate that there is no limit to the number of errors. Set MaxErrors to 0 , under first error, the whole process of change will be rejected (If change occur inwardly transactionses). If MaxErrors = -1, possible any number of errors. Record, which renovations have come of errors have an additional UpdateError property type TUpdateErrorEh.

Before parcel the changed record in TDataDriverEh can be useful to ensure an image a condition of changing the record. This particularly useful, if You want to allow an user to canceal certain change or display a type of changing a record.

For the image of information on change possible to use UpdateStatus method and characteristic StatusFilter:

UpdateStatus indicates a type of changing a current record. It can return one of the following values:

usUnmodified Indicates that current record did not change.

usModified Indicates that current record was edited.

usInserted Indicates that record was added by the user.

usDeleted Indicates that record was removed by the user.

StatusFilter defines record what type are seen for navigations. StatusFilter works with broken off by record nearly in the same way how a filter in usual datas works. StatusFilter - a kit (Set), so it can contain any combination of following values:

usUnmodified To Remove неизмененные record.

usModified To Remove modified record.

usInserted To Remove added record.

usDeleted To Remove distant record.

By default, StatusFilter is of importance [usModified, usInserted, usUnmodified]. You may add a value usDeleted to see distant record.

RevertRecord - restores an old condition of record and values of sexes. If record was added in the program, it is deleted from the list. Characteristic UpdateStatus is restored in usUnmodified value.

MergeChangeLog - deletes a journal of breaking off change. All added or changed record get usUnmodified status.

CancelUpdates - canceals all broken off change and restores an old condition of record.

Marks of record and transition on record on the mark.

In addition to moving from record to record in a dataset (or moving from one record to another by a specific number of records), it is often also useful to mark a particular location in a dataset so that you can return to it quickly when desired. TDataSet introduces a bookmarking feature that consists of a Bookmark property and five bookmark methods. In TMemTable bookmarks equivalents by record number (RecNo).

The Bookmark property.

The Bookmark property indicates which bookmark among any number of bookmarks in your application is current. Bookmark is a string that identifies the current bookmark. Each time you add another bookmark, it becomes the current bookmark.

Метод GetBookmark

I do not recommend to use this method, use Bookmark property instead of it. See VCL documentation for detail.

Методы GotoBookmark и BookmarkValid

When passed a bookmark, GotoBookmark moves the cursor for the dataset to the location specified in the bookmark. Before calling GotoBookmark, you can call BookmarkValid to determine if the bookmark points to a record. BookmarkValid returns True if a specified bookmark points to a record.

Метод CompareBookmarks

You can also call CompareBookmarks to see if a bookmark you want to move to is different from another (or the current) bookmark. If the two bookmarks refer to the same record (or if both are nil), CompareBookmarks returns 0.

Метод FreeBookmark

This method is Used in combinations with GetBookamrk. I do not recommend to use this method. See VCL documentation for detail.

Searching TMemTableEh

You can search inTMemTableEh using following methods:

1. Locate

Locate moves the cursor to the first row matching a specified set of search criteria. In its simplest form, you pass Locate the name of a column to search, a field value to match, and an options flag specifying whether the search is case-insensitive or if it can use partial-key matching. (Partial-key matching is when the criterion string need only be a prefix of the field value.) For example, the following code moves the cursor to the first row in the CustTable where the value in the Company column is "Professional Divers, Ltd.":

var

 LocateSuccess: Boolean;

 SearchOptions: TLocateOptions;

begin

 SearchOptions := [loPartialKey];

 LocateSuccess := CustTable.Locate('Company', 'Professional Divers, Ltd.', SearchOptions);

end;

If Locate finds a match, the first record containing the match becomes the current record. Locate returns True if it finds a matching record, False if it does not. If a search fails, the current record does not change.

The real power of Locate comes into play when you want to search on multiple columns and specify multiple values to search for. Search values are Variants, which means you can specify different data types in your search criteria. To specify multiple columns in a search string, separate individual items in the string with semicolons.

Because search values are Variants, if you pass multiple values, you must either pass a Variant array as an argument (for example, the return values from the Lookup method), or you must construct the Variant array in code using the VarArrayOf function. The following code illustrates a search on multiple columns using multiple search values and partial-key matching:

with CustTable do
 Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver','P']), loPartialKey);

Locate uses the fastest possible method to locate matching records. If the columns to search are indexed and the index is compatible with the search options you specify, Locate uses the index.

2. Lookup

Lookup searches for the first row that matches specified search criteria. If it finds a matching row, it forces the recalculation of any calculated fields and lookup fields associated with the dataset, then returns one or more fields from the matching row. Lookup does not move the cursor to the matching row; it only returns values from it.

In its simplest form, you pass Lookup the name of field to search, the field value to match, and the field or fields to return. For example, the following code looks for the first record in the CustTable where the value of the Company field is "Professional Divers, Ltd.", and returns the company name, a contact person, and a phone number for the company:

var

 LookupResults: Variant;

begin

 LookupResults := CustTable.Lookup('Company', 'Professional Divers, Ltd.', 'Company;Contact; Phone');

end;

Lookup returns values for the specified fields from the first matching record it finds. Values are returned as Variants. If more than one return value is requested, Lookup returns a Variant array. If there are no matching records, Lookup returns a Null Variant.

The real power of Lookup comes into play when you want to search on multiple columns and specify multiple values to search for. To specify strings containing multiple columns or result fields, separate individual fields in the string items with semicolons.

Because search values are Variants, if you pass multiple values, you must either pass a Variant array as an argument (for example, the return values from the Lookup method), or you must construct the Variant array in code using the VarArrayOf function. The following code illustrates a lookup search on multiple columns:

var

 LookupResults: Variant;

begin

with CustTable do
 LookupResults := Lookup('Company; City', VarArrayOf(['Sight Diver', 'Christiansted']), 'Company; Addr1; Addr2; State; Zip');

end;

Like Locate, Lookup uses the fastest possible method to locate matching records. If the columns to search are indexed, Lookup uses the index.

3. FindRec

FindRec searches for the first row that matches specified search criteria and return record number. Syntax of calling a method complies with syntax of Locate method.

When MemTableEh is in tree-view mode the Locate and FindRec methods search records only in expanded nodes. To search in all nodes use MemTableEh.TreeList.Locate method. This method also expand found node so it will be visible in dataset.

4. GotoRec

GotoRec moves the cursor to the row passed by the Rec parameter. GotoRec returns True if it finds a record, False if it does not.

Quick access to the record values.

To get values of the fields from specified record in standard DataSet, it is necessary to move to the required record. This not always suitable since when you move to the record using MoveBy, RecNo, Bookmark methods calls events about changing the record position that can bring about big delays and repaint of the screen.

There are several ways in MemTableEh to get values of the fields without activations events about changing record position.

1. You can use DisableControls, EnableControls methods to deactivate events about changes in DataSet. Disadvantage of this way is that EnableControls causes event about changes DataSet, that will repaint visual component connected to DataSet.

2. You can use InstantReadEnter, InstantReadLeave methods to enter in InstantRead mode.

InstantReadEnter enters in mode of viewing records and moves position to the record determined by the RowNum parameter. After that you can read values of record. Each call of InstantReadEnter method, must correspond call InstantReadLeave. InstantReadLeave leave a viewing records mode. In InstantRead mode it is not allowed to change values of record. InstantReadEnter and InstantReadLeave methods do not send events about changing position in DataSet.

3. You can use properties to access internal objects of MemTableEh. Internal objects allow to access values of record as to the array of data with index. Besides you may addresses to all writing an internal array given disregarding local filter. For access to internal structures of datas use following characteristics objects TMemTableEh:

RecordsView: TRecordsViewEh – filtered list of records.

RecordsView.Rec[Index: Integer]: TMemoryRecordEh – access to certain record in filtered list of records.

RecordsView.Count: Integer – Count of records in the filtered list of records. In TreeView mode list have only visible in expanded nodes.

RecordsView.MemTableData.RecordsList[Index: Integer]: TMemoryRecordEh – access to certain record in the list of all records.

RecordsView.MemTableData.RecordsList.Count – Count of records in list of all records.

RecordsView.MemTableData.RecordsList[Index: Integer].DataValues[const FieldNames: string; DataValueVersion: TDataValueVersionEh]: Variant – access to certain value of field in record specified by Index.

Copying data from/to another DataSet.

TMemTableEh affords the following methods for the copying data from/to another DataSat:

SaveToDataSet method

Copying it own data in another DataSet, specified by Dest parameter. If RecordCount parameter > 0, the copying begins from current record of source DataSet and copy not more then RecordCount record. If RecordCount = 0 then all records will be copied. When copying the MemTable always add records in Dest DataSet.

LoadFromDataSet method
Loads not more then RecordCount records from Source DataSet to itself. If RecordCount = -1 then it load all record. If Mode parameter is lmCopy then all data will be deleted before loading. If Mode parameter is lmAppend then new records will be added to existing data.

UseIfCachedUpdates parameter define that new records gets usInserted status.

Internal objects of TMemTableEh component.

In most cases to work with data in TMemTableEh it is sufficient to use properties and methods of the TMemTableEh. However in some cases it is necessary to work with data at low level. TMemTableEh component keep records in internal array of records and has seven main objects for processing the internal data:

TMemTableDataEh – Internal table of data. Is have two objects: TMTDataStructEh - describes the structure of a table fields and TRecordsListEh containes a list of records of TMemoryRecordEh type.

TMTDataStructEh – Describes structure of a table fields. Is have a list of objects that inherited from TMTDataFieldEh class.

TMTDataFieldEh – base class that describe field type in internal table array. It is a parent for such types as TMTStringDataFieldEh, TMTNumericDataFieldEh, TMTDateTimeDataFieldEh, TMTBlobDataFieldEh, TMTBooleanDataFieldEh, TMTInterfaceDataFieldEh, TMTVariantDataFieldEh, TMTRefObjectFieldEh.

TRecordsListEh – list of records.

TMemoryRecordEh – one record in list of record.

TRecordsViewEh – hold filtered list of records. Only those records that meet a TMemTableEh.Filter conditions are hold in RecordsView.

Hold only records that TMemTableEh.Filter.

TMemoryTreeListEh – hold a tree-type list of TMemRecViewEh objects with references to record.

Workig with TMemTableEh at design-time.

At design-time the double click on the component opens a window of component controling - TMemTableFieldsEditor. It allows:

Create fields (TField components) for TMemTableEh.

Fill TMemTableEh datas.

Load data in TMemTableEh from other DataSet.

Create 'stand-alone’ array of datas.

Clean TMemTableEh.

Create new TDataDriver object for TMemTableEh basing on existing DataSet-source of data. Herewith, designer will try to assign DataDriver properties founding on the type DataSet-source. For instance, if you choose to create DataDriver of TSQLDataDriver type and DataSet-source will have a TQuery type, the designer will assign TSQLDataDriver.SelectComand.CommandText property automatically from TQuery.SQL property.

TDataDriverEh component.

TDataDriverEh is universal data provider for TMemTableEh and a handler of the changes in TMemTableEh. TDataDriverEh is a simplest supplier of datas, it is a agent between TMemTableEh and other DataSet, that can to work with the database. Although many DataSet’s can be connected to DBGrid directly, avoiding TMemTableEh, ligament DBGridEh-DataSource-MemTableEh-DataDriverEh-DataSet is possible to use if you want to use advantages of DBGridEh functioning in ligaments with MemTableEh such as ViewScroll mode, tree-type viewing of data, using same data by the several MemTableEh’s.

In the mode of the supplier, TDataDriverEh takes data from DataSet, that assigned to ProviderDataSet property, and copies them in TMemTableEh. Before getting first record, MemTableEh requests structure of fields from TDataDriverEh and create internal array of records. TDataDriverEh build structure of fields on basis of fields list of ProviderDataSet. As required, TDataDriverEh takes values of the current record, writes their to a new record of TMemTableEh and goes over to the next record in ProviderDataSet.

Furthermore, TDataDriverEh can refresh values of the existing MemTable record from ProviderDataSet (TMemTableEh.RefreshRecord method). TDataDriverEh find record in ProviderDataSet using fields value from KeyFields property and reread values of record in MemTable record. When TDataDriverEh is used as handler of change (TMemTableEh.ApplyUpdates method), it takes a changed record from TMemTableEh, using characteristic KeyFields, finds its position in ProviderDataSet, updates a record in ProviderDataSet, queries it again from ProviderDataSet and returns a record back in TMemTableEh.

Events of TDataDriverEh allows to control data which are transferred between TDataDriverEh and TMemTableEh , as well as transfer and process changes from any/to other types source of data.

TDataDriverEh have next events:

OnBuildDataStruct - write this event to change a structure of fields created when TMemTableEh requests structure of fields. You can call DafaultBuildDataStruct method to build a structure by default.

OnProduceDataReader - write this event to return dataset-cursor to read data. You can call DefaultProduceDataReader method to define dataset-cursor by default. By default dataset-cursor will be a ProviderDataSet.

OnReadRecord - write this event to assign values of record of new record that delivered to TMemTableEh, or indicate that no more data. You can call DefaultReadRecord method to assign values by default. By default values of record will be assigned from dataset-cursor. If Eof function of dataset-cursor is True then TDataDriverEh indicate that no more data.

OnAssignFieldValue - write this event to assign a value of each field of new record that is delivered to TMemTableEh, or when record is refreshing. Use DataValueVersion to determine the mode of assigning: dvvValueEh – when need to assign value for a new record, dvvRefreshValue - when need to assign value for existing record. You can call DefaultAssignFieldValue to assign a value of the field by default.

OnRefreshRecord - write this event to assign fresh value of fields at the refreshment of record from the server. You an call DefaultRefreshRecord to assign fresh values by default.

OnUpdateRecord - write this event to process updated records in TMemTableEh. Use MemRec.UpdateStatus property to determine the type of changes: Updating, Deleting or Inserting. You can call DefaultUpdateRecord to process updated record by default. By default DataDriver conducts changes in ProviderDataSet.

OnUpdateError - write this event to respond certain actions when error is arising in time of processing updates.

Following reaction is possible when error is arising:

ueaBreakAbortEh
Break this and all following operations of changes, exception is not raising.

ueaBreakRaiseEh
Break this and all following operations of changes, rollback transactions, exception is raising.

ueaCountinueEh
Ignore an error, does not change a status of a record and continue a performing the rest operations.

ueaRetryEh
Repeat an operation (You should undertake actions to prevent this error on next time).

ueaUpdated CountinueSkip
Ignore an error, set record status to Unchanged, continue a performing the rest operations.

You can call DefaultUpdateError to execute actions by default.

TSQLDataDriverEh component.

TSQLDataDriverEh is a universal driver of data which interact with server by means of SQL. TSQLDataDriverEh have five objects of the TSQLCommandEh type: SelectCommand, DeleteCommand, InsertCommand, UpdateCommand, GetrecCommand. Each object holds SQL expressions and parameters to execute command to, accordingly, query data, delete record, insert record, update record and get record. To execute command, TSQLDataDriverEh calls global event - DefaultSQLDataDriverResolver.OnExecuteCommand. You should write this event to execute SQL expressions on the server and, if need, return DataSet to read data. When TSQLDataDriverEh is used as provider of data, it takes records from DataSet created in DefaultSQLDataDriverResolver.OnExecuteCommand event and writes them in TMemTableEh. On the measure of the requirement it takes given current record, writes them in TMemTableEh and goes over to following record. When TSQLDataDriverEh is used as handler of changes, it takes a changed record from TMemTableEh, and call DefaultSQLDataDriverResolver.OnExecuteCommand event sending DeleteCommand, InsertCommand or UpdateCommand as a parameter.

Using TSQLDataDriverEh it is possible change a type of the access to data. Suffice it to rewrite global event - DefaultSQLDataDriverResolver.OnExecuteCommand.

TSQLDataDriverEh has a SpecParams property of TStrings type. You may use it to write the special values, which you can use in the DefaultSQLDataDriverResolver.OnExecuteCommand event. This event also is used by TServerSpecOperationsEh object when DefaultSQLDataDriverResolver.ServerSpecOperations property is assigned. List of special values depends of the type of TServerSpecOperationsEh object and values is filled similarly of description in the "Characteristic TXXXDataDriverEh.SpecParams" section.

DefaultSQLDataDriverResolver.ServerSpecOperations property has a TServerSpecOperationsEh type. This object is intended to process the special operations before or after ExecuteCommand procedure is performed. TServerSpecOperationsEh is a base class for classes TOracleSpecOperationsEh, TMSSQLSpecOperationsEh, TInterbaseSpecOperationsEh, TInfromixSpecOperationsEh, TDB2SpecOperationsEh, TSybaseSpecOperationsEh and TMSAccessSpecOperationsEh. Each Of these objects can process a SpecParams property in particular to get values of the autoincrement fields that is generated by the server. On the name of the class it is possible to define a type of the server, for which class is intended.

For full functioning of TSQLDataDriverEh it is necessary to write DefaultSQLDataDriverResolver.OnExecuteCommand event to execute queries on the server and assign DefaultSQLDataDriverResolver.ServerSpecOperations property by the object that inherited from TServerSpecOperationsEh class. Assigning a ServerSpecOperations property makes sense, if you execute operations of the insertion in tables that have autoincrement field (or sequence objects).
The typical code to adjust working of TSQLDataDriverEh can be look as follows:

// Below code adjusts working of TSQLDataDriverEh components in the whole Application to access

// InderBase server via BDE Engine
uses … DataDriverEh, BDEDataDriverEh;
type

 TMainForm = class(TMainForm)

 Database1: TDatabase;

 SQLDataDriverEh: TSQLDataDriverEh;
…
procedure TMainForm.FormCreate(Sender: TObject);

begin

 DefaultSQLDataDriverResolver.OnExecuteCommand := OnExecuteSQLCommand;

 DefaultSQLDataDriverResolver.ServerSpecOperations := TInterbaseSpecOperationsEh.Create;

end;

procedure TMainForm.FormDestroy(Sender: TObject);

begin

 DefaultSQLDataDriverResolver.ServerSpecOperations.Free;

 DefaultSQLDataDriverResolver.ServerSpecOperations := Nil;

end;

function TMainForm.OnExecuteSQLCommand(SQLDataDriver: TCustomSQLDataDriverEh;

 Command: TCustomSQLCommandEh; var Cursor: TDataSet; var FreeOnEof,

 Processed: Boolean): Integer;

begin

 Result := DefaultExecuteBDECommandEh(SQLDataDriver, Command,

 Cursor, FreeOnEof, Processed, Database1.DatabaseName);

end;

TSQLDataDriverEh is a base class for TBDEDataDriverEh, TIBXDataDriverEh, TDBXDataDriverEh and TADODataDriverEh. These objects overwrite ExecuteCommand procedure and them can execute SQL expressions on the server and if need returns DataSet to read data. When SQL commands is called, it creates DataSet with type of corresponding type of the access to data. For TBDEDataDriverEh it is a TQuery, for TIBXDataDriverEh it is a TIBXQuery and so on. Furthermore, TBDEDataDriverEh, TIBXDataDriverEh, TDBXDataDriverEh can define TServerSpecOperationsEh object automatically. For TADODataDriverEh it is need to assign DefaultSQLDataDriverResolver. ServerSpecOperations because ADO technology does not allow to define a type of the server.

TSQLDataDriverEh have the next events:

OnExecuteCommand - write this event to execute SQL expression. You can call TCustomSQLDataDriverEh.DefaultExecuteCommand method to process this event by default. By default TCustomSQLDataDriverEh. DefaultExecuteCommand calls DefaultSQLDataDriverResolver.ExecuteCommand method, which, in turn, call DefaultSQLDataDriverResolver.OnExecuteCommand event.

OnGetBackUpdatedValues - write this event to return updated values from server. You can call TCustomSQLDataDriverEh.DefaultGetUpdatedServerValues method to process action by default. TCustomSQLDataDriverEh.DefaultGetUpdatedServerValues call DefaultSQLDataDriverResolver.GetBackUpdatedValues. If it was not processed in DefaultSQLDataDriverResolver then it call InternalGetServerSpecOperations.GetBackUpdatedValues. InternalGetServerSpecOperations returns object of TServerSpecOperationsEh type.

Property TXXXDataDriverEh.SpecParams.

Property SpecParams kept a list of parameters and values. TXXXDataDriverEh use them when performing SQL expressions. Value of each parameter have to be wrote in the separate line in the format ‘PARAMETER_NAME =VALUE’. Depending on the type of the server (InterBase, Oracle, MSSQL, Informix) SpecParams can contain the following parameters.

On interaction with InterBase server:

‘GENERATOR’ - defines a name of the InterBase generator. DataDriver uses this parameter to get current value of generator after the insertion of new record.

‘GENERATOR_FIELD’ - defines a name of the field, which will be assigned current value of the generator after the insertion of new record.

‘AUTO_INCREMENT_FIELD’ - defines a name of the field, which DataDriver will set AutoIncremet type. It is used on making a structure of the internal array of record.

On interaction with Oracle server:

‘SEQUENCE’ - will assign a name of the field Oracle sequences. DataDriver uses this parameter for the reception of the current value of the sequence after the insertion of new record.

‘SEQUENCE_FIELD’ - will assign a name of the field, which will be assigned current value of the sequence after the insertion of new record.

‘AUTO_INCREMENT_FIELD’ - defines a name of the field, which DataDriver will set AutoIncremet type. It is used on making a structure of the internal array of record.

On interaction with MSSQL server:

‘AUTO_INCREMENT_FIELD’ - defines a name of the field, which DataDriver will set AutoIncremet type. It is used on making a structure of the internal array of record.

On interaction with Informix server:

‘AUTO_INCREMENT_FIELD’ - defines a name of the field, which DataDriver will set AutoIncremet type. It is used on making a structure of the internal array of record.

Example of the list of parameters for InterBase server:

 GENERATOR=EMP_NO_GEN

 GENERATOR_FIELD=emp_no

 AUTO_INCREMENT_FIELD=emp_no

SQL expression for the insertion of record must contain EMP_NO_GEN generator.

 insert into

 employee (EMP_NO, FIRST_NAME)

 values

 (:EMP_NO_GEN, :FIRST_NAME)

TSQLDataDriverEh or TXXXDataDriverEh, which choose to use.
As TSQLDataDriverEh as one of the TBDEDataDriverEh, TIBXDataDriverEh, TDBXDataDriverEh or TADODataDriverEh components (we will name them as TXXXDataDriverEh) allow to work with database without big number of tunings.

For TXXXDataDriverEh it is sufficiently to set database object property (For TBDEDataDriverEh it is a Database property of TDatabase type).

TSQLDataDriverEh does not have database object property. To force it works is sufficiently to write DefaultSQLDataDriverResolver.OnExecuteCommand event once to execute queries on server, and assign DefaultSQLDataDriverResolver.ServerSpecOperations property by the object of TServerSpecOperationsEh type to process some specific server operations. DefaultSQLDataDriverResolver is not visual object, so you have to assign an event and property in the program, for example in the OnCreate event of your main form. It is possible to change access Engine to database quickly when you use TSQLDataDriverEh. It is sufficiently rewrite global event - DefaultSQLDataDriverResolver.OnExecuteCommand only.

TSQLDataDriverEh and TXXXDataDriverEh works very similar at design-time. When TSQLDataDriverEh component editor is opening you can choose one of design-time types of the database accesses that built-over BDE, ADO, IBX and DBX engines. It is not necessarily that the access engine that you use at design-time will be same as you write in DefaultSQLDataDriverResolver.OnExecuteCommand event.

Working with TSQLDataDriverEh and TXXXDataDriverEh at design-time.

Double click on TSQLDataDriverEh or TXXXDataDriverEh component opens a dialog editor of TSQLDataDriverEh component. At a design-time TSQLDataDriverEh and TXXXDataDriverEh always use design time copy of object that work with database (it is TDatabase object for DBE engine). If where are not any object was created the system will offer to create a new object. Type of dialog of creating DB Object depend of type of TXXXDataDriverEh. For TSQLDataDriverEh it show dialog where you can choose a type of the access to server (Engine) and service of data processing of server (DB Service). Type of the access defines a engine to access the data and can be one of the following types: BDE, IBX, DBX or ADO. For ADO also need to define "Service a data processing", class that can get a list of DB objects from server. If object that work with database already has been create before then system will offer to choose one of the existing.

Window of editing TSQLDataDriverEh have a next controls:

1. Tree list of DB objects. Tables, Views, Procedures, Functions etc. It depends of server type.

2. Lower window of elements of the current object in the tree of objects.

3. Output grid of result of executing the Select expressions.

4. Page of Select expression (TSQLDataDriverEh.SelectSQL)

5. Pages expressions for Inserting, Updating, Deleting, Requesting one record.

6. Page to fill SpecParams property and parameters of dynamic SQL building.

 Feedback and bug reports

Don't lazy to notify me about all bugs but when you will send me such info prepare as possible more detail info about bug. To check your information about bug I have to have possibility to model this situation on my computer.

Include info about OS and service pack, Version of Delphi with Build, Version of EhLib.

Also, if possible and you have suspicion that it give additional info, check that error raise on other computers, other OS, other versions of Delphi, other versions of EhLib.

The most effective result will be if you send me source code of special demonstration Project that raise it error. Demo Project have to have standard dataset's (not third party) and use tables from DBDEMOS or you can copy data from your dataset to TClientDataSet. Don't send me Demo Projects that contain third party DataSet's or other third party components.

